ENVIRONMENTAL-PRODUCT DECLARATION

as per *ISO 14025* and *EN 15804+A2*

Owner of the Declaration	Fritz EGGER GmbH & Co. OG
Publisher	Institut Bauen und Umwelt e.V. (IBU)
Programme holder	Institut Bauen und Umwelt e.V. (IBU)
Declaration number	EPD-EGG-20200247-IBD2-EN
Issue date	25.05.2021
Valid to	24.05.2027

EGGER DHF EGGER Holzwerkstoffe Wismar GmbH & Co. KG

www.ibu-epd.com | https://epd-online.com

1. General Information

EGGER Holzwerkstoffe Wismar GmbH & Co. KG	EGGER DHF
Programme holder	Owner of the declaration
IBU – Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Germany	Fritz EGGER GmbH & Co. OG Weiberndorf 20 6380 St. Johann in Tirol Austria
Declaration number	Declared product / declared unit
EPD-EGG-20200247-IBD2-EN	1 m³ EGGER DHF board with an average raw density of 615 kg/m³ and a delivery moisture of approximately 7.5%.
This declaration is based on the product category rules:	Scope:
Wood based panels, 01.08.2021 (PCR checked and approved by the SVR)	This document refers to DHF boards, which are manufactured in the following plant:
Issue date	-
25.05.2021	
Valid to	– Egger Holzwerkstoffe Wismar GmbH
24.05.2027	& Co. KG
	Am Haffeld 1, 23970 Wismar, Germany The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.
Man Peter	The EPD was created according to the specifications of EN 15804+A2. In the following, the standard will be simplified as <i>EN 15804 bezeichnet</i> .
DiplIng Hans Peters	Verification
(chairman of Institut Bauen und Umwelt e.V.)	The standard EN 15804 serves as the core PCR
	Independent verification of the declaration and data according to ISO 14025:2011
	internally X externally
+ Paul	F.W_
Florian Pronold (Managing Director Institut Bauen und Umwelt e.V.)	Dr. Frank Werner, (Independent verifier)

2. Product

2.1 Product description/Product definition

EGGER

DHF boards are synthetic resin-bonded medium-density wood fibre boards

according to *EN 622-5* (board type MDF.RWH), which are manufactured in a

dry process. They are mainly based on fibres from softwood. The wood-based

panels are fitted with tongue and groove profiles in the edge area. The average

data reflects the specific production situation for DHF boards for a density of

615 kg/m³. Regulation (EU) no. 305/2011 (*CPR*) applies to bringing the product into circulation in the EU/EFTA (with the exception of Switzerland). The product requires a declaration of performance according to *EN* 13986:2004+ A1:2015, Wood-based panels for use in construction – Characteristics, evaluation of conformity and marking and *EN* 14964:2006 Rigid underlays for discontinuous roofing - Definitions and characteristics and the CE marking.

2.2 Application

EGGER DHF boards are mainly used as vapour permeable, heat-insulating and partly load-bearing cladding in roofs and walls.

They meet the requirements as sub-roofing of type UDP-A according to the

guideline of the Central Association of German Roofers (ZVDH).

DHF boards can be used as load-bearing external cladding for walls and roofs in service classes 1 and 2 according to *EN*

1995-1-1, taking into account DIN 68800-2.

In addition to the aforementioned

application regulations, the respective national regulations must be

observed.

2.3 Technical Data

A declaration of performance (DoP) with relevant data for EGGER DHF boards with CE marking according to *EN 13986*:2004+A1:2015 and *EN 14964*:2006 are available at www.egger.com.

Structural engineering data

Name	Value	Unit
Gross density according to EN 323	600 - 630	kg/m ³
Grammage	9 - 12.6	kg/m ²
Bending strength (longitudinal) according to EN 310	14 - 17	N/mm ²
E-module (longitudinal) according to EN 310	1600 - 3000	N/mm ²
Material dampness at delivery according to EN 322	4 - 11	%
Dimensional change with each 1% change of the humidity content MDF (length/width/thickness) according to CEN/TR 12872	0,05 / 0,05 / 0,7	%
Tensile strength rectangular according to EN 319	11.7	N/mm ²
Impact resistance classification	k.A.	-
Joint opening	k.A.	mm
Height difference between elements	k.A.	mm
Thermal conductivity EN 13986	0.1	W/(mK)
Water vapour diffusion resistance factor according to ISO 12572	11	-
Sound absorption degree frequency range 250500 Hz according to EN 13986	0,10	-
Sound absorption degree frequency range 1000-2000 Hz according to EN 13986	0,25	-
Room sound improvement	k.A.	Sone
24 h thickness swelling according to EN 319 according to EN 317	<6,5	%

Performance values of the product according to the declaration of performance in relation to its essential characteristics according to EN 13986:2004+A1:2015 or EN 14964:2006 (not part of the CE

marking).

2.4 Delivery status

DHF boards can be delivered in the following sizes:

Thickness: 15 mm + 20 mm

Length:

2500 - 3000 mm

Width:

612 - 1250 mm

Surface: unsanded

Other sizes available upon request.

2.5 Base materials/Ancillary materials

DHF boards with a thickness between 12 and 20 mm and an average density of 600-630 kg/m³ consist of (information in weight % per 1 m³ of production):

- approx. 88 % wood fibres: untreated sawmill residues as well as partially untreated, fresh wood from thinning measures (predominantly of the wood species spruce and pine)
 7 % water (wood moisture)
 3 % PMDI
- **glue** (polymer diphenylmethane diisocyanate): Here MDI (Diphenyl methane – Di isocyanate), a polyuria pre-product is used, which during the board production is transformed into PUR (polyurethane) and polyuria. These
- serve the purpose of bonding the wood fibres. • 1 % paraffin
- **wax emulsion**: for hydrophobising (improvement of moisture resistance).
- Additive: Separating agent to avoid caking on the pressure plate

Chemicals legal information:

1) The product contains substances on the *ECHA List* of substances of very high concern (date 25.06.2020) above 0.1% by weight:

no
 2) The product contains additional CMR substances of the category 1A or 1B that are not on the candidate list, above
 0.1 weight %:

 no
 3) Biocidal products have been added to this building product or it has been treated with biocidal products (this refers to treated goods within the meaning of the /Biocidal Products Regulation (EU) No. 528/2012):

• no Download the current certification concerning the use of SVHC substances: www.egger.com/umwelt

2.6 Manufacture

Sawmill residues or debarked logs are crushed to a defined size and then cooked in a high pressure cooker and turned into wood fibres with grinding discs. These wood fibres are coated with glue and strewn in a continuously working dispersing station to form a continuous fibre cake. This cake is then continuously transported through a continuous hot press, and thus constantly compressed to the desired final thickness. After the press, the continuous board strand is cut to the required raw board size and cooled in large star coolers to room temperature. The boards are then cut to final size during finishing and fitted with tongue and groove profiles,

packaged, and stored for shipping.

The production includes the following process stages:

1. Peeling logs

2. Chipping the wood to produce chips and

wood chips

3. Cooking the chips and wood chips

4. Defibration in the refiner

5. Drying the fibres to approximately 2 - 3 %

residual moisture

6. Application of resin to the fibres

7. Spreading the glue-coated fibres onto a

forming belt

8. Compression of the fibre mat in

а

hot press that works continuously

9. Cutting and trimming the

fibre strand into Water/soil: rawboard formats 10. Cooling the rawboards in There is no impact on water or soil. Waste water from production is treated internally and returned to production. star coolers 11. Piling into large stacks Sound insulation: 12. Finishing / tongue and groove line Noise protection measurements showed that all the values determined within and outside of the production plant were far below the minimum requirements applicable for Germany. Noise intensive plant components such as the chip removal are accordingly encapsulated through All waste generated in the course of structural measures. production (trimming and milling waste) is used thermally with no

The Wismar plant is certified with a quality management system according to ISO 9001.

Environment and health during manufacturing 2.7

Measures to prevent injuries to health / health encumbrances during the manufacturing process:

Due to the manufacturing conditions no measures for health protection are necessary over and above the legislative and other regulations. Every area of the facility performs significantly below MAC values (maximum allowable concentration - MAC and BEL values list 2016).

Air:

exceptions.

Exhaust air is cleaned in accordance with the applicable legal regulations. All

legal limits are complied with.

The Wismar plant is certified with an energy management system according to ISO 50001 and an environmental management system according to ISO 14001.

2.8 Product processing/Installation

DHF boards can be sawed, milled and drilled with regular (electrical) machines. Hard metal tipped tools are recommended, particularly in the case of circular saws.

The safety measures that are usual for solid wood processing must be observed. Wear a respiratory mask if using hand tools without a dust extraction device.

The boards can be used in applications of service class 2 (humid conditions) according to EN 1995-1-1. Extensive information and processing recommendations are available under www.egger.com/bauprodukte.

2.9 Packaging

Underlays made of wood material strips, cardboard, steel bands and recyclable PE films (only tongue and groove boards) are used for transport packaging from the plant, which can be sorted and collected for recycling.

2.10 Condition of use

The component materials of EGGER DHF comply in terms of their proportions to those of the basic material composition

described in section 2.5 "Basic materials". The bonding agents are

chemically stable and mechanically bonded to the wood under normal

conditions.

2.11 Environment and health during use

Environmental protection:

There is no risk of water, air / atmosphere or ground contamination given currently available knowledge assuming intended use is observed.

Health aspects:

There are no health hazards or effects

to be expected from normal use, i.e. in accordance with the intended uses of

EGGER DHF. Natural wood constituents may be released in small quantities.

Emissions of pollutants are not detectable.

2.12 Reference service life

The service life of the DHF boards depends

on the area of application in the specific project, taking into account the use

class according to *EN 1995-1-1*, *DIN 68800-2* and appropriate maintenance.

For structural applications, the reference useful life according to *ISO 15686* is at least 50 years.

According to the BBSR table

2017, the useful life is 50 years on average. Description of the influences on the ageing of the product when applied in accordance with the rules of technology.

2.13 Extraordinary effects

Fire Smoke development / smoke density:

Corresponds to smoke development and smoke density of solid wood.

Toxicity of fire gases:

Under certain fire conditions, hydrogen cyanide (prussic acid), apart from the usual fire gases, may be released from the PMDI resins contained in the boards as a result of the transformation process during combustion. Due to the toxicity of the fumes that are produced, waste portions of the stated products must be combusted in enclosed, specifically approved systems and never in any type of open fire

Change of the aggregate state (burning drip off/fall off):

Dripping by combustion is impossible because EGGER DHF boards do not liquefy when hot.

Fire protection

Name	Value
Building material class according to EN 13501-1	D
Burning droplets according to EN 13501-1	d0
Smoke gas development according to EN 13501-1	s2

Water

No ingredients are washed out that could pose a hazard for water (cf. 7.3.1 Heavy metals / eluate (EOX) and migration). DHF boards are not resistant to continuous water influence, damaged parts, however, can easily be locally replaced following, for example, limited flood exposure.

Mechanical destruction

The breaking pattern of EGGER DHF displays a relatively brittle behaviour in which small smooth breaking surfaces occur on the broken edges of the boards. There is no negative impact on the environment.

2.14 Re-use phase

Reuse:

DHF boards fastened with screw connections

can be easily collected separately when a building is converted or ends its use phase in the case of selective dismantling and reused for the same application or for applications other than the original one. Exceptions to this are boards that have been bonded over their surface.

2.15 Disposal Waste code:

030105 / 170201 acc. AVV (Waste Regulation)

Material utilisation:

Incidental residuals of DHF boards should first be guided towards material recycling. Energy utilisation (in plants approved for this purpose):

With the high average calorific value of approximately 16 MJ/kg (depending on board moisture) an energy utilisation for the generation of process energy and electricity (combined heat and energy power plants) from board residues from the construction site as well as from demolition measures are to be preferred over dumping. They may only be burned in suitable and legally permitted facilities. Local stipulations are available from the relevant authorities.

Packaging:

Transport packaging materials can be collected separately and recycled appropriately. In some cases, external disposal can be arranged with the manufacturer.

2.16 **Further information**

Further information on production, the environment and sustainability, processing recommendations and other information is available at www.egger.com/bauprodukte.

3. LCA: Calculation rules

Declared Unit 3.1

This environmental product declaration is based on a declared unit of 1 m³ EGGER DHF board with an average raw density of

615 kg/m³ and a delivery moisture of approximately 7.5 %.

Specification of the declared unit

Name	Value	Unit
Declared unit	1	m ³
Conversion factor to 1 kg (kg/m³)	615	-
Mass reference	615	kg/m ³

The EGGER DHF boards are manufactured

in the Wismar plant in Germany. The calculation of the declared unit was volume weighted.

System boundary 3.2

The LCA of the EGGER DHF includes a cradle-to-gate consideration of the occurring environmental impact with the

modules C1-C4 and module D (A1-A3, +C, +D). The following life cycle phases are

taken into account in the analysis:

Module A1-A3 | Production stage

The production stage includes the cost of raw material procurement (roundwood, producing the glue system, the emulsion and the separating agent, etc.), as well as related transport relative to the production plant in Wismar. Within the plant boundaries, DHF board production, finishing and the outgoing warehouse including the packaging of the product are taken into account. The majority of the electrical energy used is obtained from the German power grid. Both internal wood waste and scrap wood sourced externally are used in the in-house biomass power plant. The system

boundary for the scrap wood used in the production is set after

sorting and

chopping. It is assumed that the end of the waste status has been reached. The system boundary for secondary raw materials according to *EN* 15804

applies.

Module C1 | Dismantling / Demolition

Manual removal was assumed for the DHF boards. The associated efforts are negligible, which means that no environmental impact

from the dismantling of the products is declared.

Module C2 | Transport to waste treatment

Module C2 includes transport to waste treatment. For this purpose, transport by lorry over a distance of 50 km is used as a representative scenario.

Module C3 | Waste processing

The wood product and with it the

material-inherent properties leave the product system as

secondary fuel in

module C3. Furthermore, chopping after product disassembly is also considered.

Module C4 | Disposal

The scenario used declares the energy recovery of the wood products, which means that no environmental impact from the waste

treatment of the products in C4 are to be expected.

Module D | Credits and charges outside the system limits

The energy utilisation of the product at the end of its life cycle is described in Module D, including

energetic substitution potential as a European average scenario.

3.3 Estimates and assumptions

Assumptions and estimates are used in the absence of a representative background data set to represent the environmental impact of certain raw materials. All assumptions are supported with detailed documentation and correspond to the best possible representation of reality given the available data. A generic data set from the GaBi Database for spruce roundwood was used as background data set for roundwood. A large part of the wood processed by EGGER represents coniferous fibrewood. For other wood types used, the data set for spruce roundwood should be considered as an approximation. The present simplification thus corresponds to the best possible approach given the existing data basis. The regional applicability of the background data sets used refers to average data for Germany and Europe. **Cut-off criteria** 3.4 All inputs and outputs for which data are available and from which a significant contribution can be expected are included in the LCA model. Missing data were populated when a data basis was available using conservative assumptions for average data or generic data and are documented accordingly. Only data with a contribution of less than 1% were removed. Neglecting these data can be justified by the limited effect to be expected. Thus, no processes, materials or emissions were neglected that are

expected to make a significant contribution to the

environmental impact of the

products under consideration. It can be assumed that the data were recorded in

full and that the total sum of the neglected input flows does not exceed 5 % of

the energy and mass input.

3.5 Background data

Secondary data are included to represent the background system in the LCA model. These are taken, on the one hand, from the *GaBi* database 2020, SP40 and, on the other hand, from recognised literature sources (e.g. *Rüter & Diederichs 2012*).

3.6 Data quality

The data was collected via spreadsheets specifically created by EGGER. Questions were answered through an iterative process in writing via e-mail, phone, or in person. Given the intense discussion concerning a representation of material and energy flows in the company that is

as close as possible to reality, led by EGGER and Daxner &

Merl, the high quality of collected foreground data can be assumed. A consistent and uniform calculating procedure was applied in line with *ISO* 14044.

When selecting the background data, the technological, geographical, and time-related representativeness of the data basis was taken into consideration. When specific data was missing, generic data sets or a representative average were used. The *GaBi*

background data sets are not older than ten years.

3.7 Period under review

As part of the collection of the foreground data, the life cycle was recorded for the production year 2018. The data are

based on the annual volumes used and produced.

3.8 Geographic Representativeness

Land or region, in which the declared product system is manufactured, used or handled at the end of the product's lifespan: Germany

3.9 Allocation

The carbon dioxide content and primary

energy content of the products have been balanced on the basis of their

inherent material characteristics in line with underlying physical relationships.

4. LCA: Scenarios and additional technical information

Characteristic product properties Information on biogenic carbon

The biogenic carbon content quantifies the amount of biogenic carbon in the declared building product.

Information describing the biogenic carbon content at the plant gate

Name	Value	Unit
Biogenic carbon (in the product)	271	kg C/m³
Stored carbon dioxide (in the product)	955	kg CO2-Äq./m³

Since the end-of-life of the product packaging

is not declared in module A5, its carbon uptake is not included in modules

A1-A3.

The following technical information

represents the basis for the declared module or can be used for the development

of specific scenarios in the context of a building evaluation if modules are

not declared (MND).

Biogenic carbon in the product

The biogenic carbon content quantifies the amount of biogenic carbon in the declared building product.

Allocation within the forestry chain is

based on the publication of Hasch 2002 and its update by Rüter &

Albrecht 2007. For DHF production, sawing by-products were also used in

addition to roundwood. A price allocation according to *Rüter & Diederichs 2012* was used to calculate the environmental impact of these

by-products from the sawing system.

The thermal and electrical energy generated in the combined heat and power systems is allocated according to exergy.

3.10 Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to *EN 15804* and the building context, respectively the product-specific characteristics of performance, are taken into account. Zur Berechnung der Ökobilanz wurde die *GaBi* Hintergrunddatenbank (DB 2020, SP 40) in der *GaBi*-Software-Version 9 verwendet

Name	Value	Unit
Biogenic carbon content (in the product)	271	kg/m³
Stored carbon dioxide (in the product)	995	kg/m³

Since the end-of-life of the product packaging is not declared in module A5, its carbon uptake is not included in modules A1-A3.

Integration into building (A5)

The end-of-life of product packaging is not declared in module A5.

uecialeu

Name	Value	Unit
Packaging (PE)	0,141	kg/m³
Packaging (cardboard)	0,725	kg/m³
Packaging (squared timber)	0,0138	kg/m³
Packaging (steel strips)	0,0184	kg/m³

Utilisation (B1) see chapter 2.12 Utilisation

Name Value Unit

Maintenance (B2)

Name	Value	Unit
Information on maintenance	-	-
Maintenance cycle	-	Number/RSL
Water consumption	-	m ³
Auxiliary	-	kg
Other resources	-	kg
Electricity consumption	-	kWh
Other energy carriers	-	MJ
Material loss	-	kg

Repair (B3)

Name	Value	Unit
Information on the repair process	-	-
Information on the inspection process	-	-
Repair cycle	-	Number/RSL
Water consumption	-	m ³
Auxiliary	-	kg
Other resources	-	kg
Electricity consumption	-	kWh
Other energy carriers	-	MJ
Material loss	-	kg

Replacement (B4)/Conversion/Renovation (B5)

Name	Value	Unit
Replacement cycle	-	Number/RSL
Electricity consumption	-	kWh
Litres of fuel	-	l/100km
Replacement of worn parts	-	kg

In case a **reference service life** according to applicable ISO standards is declared then the assumptions and in-use conditions underlying the determined RSL shall be declared. In addition, it shall be stated that the RSL applies for the reference conditions only.

The same holds for a service life declared by the manufacturer. Corresponding information related to in-use conditions needs not be provided if a service life taken from the list on service life by BNB is declared.

Reference utilisation duration

The product is tested according to the normative product requirements. When used according to the rules and

the state of the

art, the reference service life corresponds to 50 years. This is to be used for

further calculations and does not constitute a manufacturer's guarantee.

Name	Value	Unit
Reference service life	50	а
Life Span (according to BBSR)	50	а
Life Span (according to BBSR)	50	а
Declared product properties (at the gate) and finishes	according to EN 14964 and EN 13986	-
An assumed quality of work, when installed in accordance with the manufacturer's instructions	Underlays with overlapping roofing	-
Outdoor environment, (for outdoor applications), e.g. weathering, pollutants, UV and wind exposure, building orientation, shading, temperature	not relevant, given use in interiors	-
Indoor environment (for indoor applications), e.g. temperature, moisture, chemical exposure	for dry and humid conditions	-
Maintenance e.g. required frequency, type and quality and replacement of components	regular visual inspection and replacement in case of damage	-

Operational energy (B6) and water consumption (B7)

Name	Value	Unit
Water consumption	-	m ³
Electricity consumption	-	kWh
Other energy carriers	-	MJ
Equipment output	-	kW

End of life cycle (C1-C4)

Name	Value	Unit
For energy recovery [balance moisture 12%]	641	kg/m³

Reuse, recuperation and recycling potential (D), relevant scenarios

Name	Value	Unit
Net flow in module D [balance moisture 12 %]	469	kg/m³
Moisture during thermal reuse	12	%
Processing rate	100	%
Efficiency of the system	61	%

5. LCA: Results

The following table contains the LCA results for a declared unit of 1 m³ EGGER DHF board with an average raw density of 615 kg/m³ (approximately 7.5 % moisture).

DESCRIPTION OF THE SYSTEM BOUNDARY (X = INCLUDED IN LCA; ND = MODULE OR INDICATOR NOT DECLARED; MNR = MODULE NOT RELEVANT)

PRO	DUCT S	TAGE		TRUCTI CESS AGE	ON		US	SE STAC	ΘE			END OF LIFE STAGE			BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIE S	
Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling- potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Х	Х	Х	MND	MND	MND	MND	MNR	MNR	MNR	MND	MND	Х	Х	Х	Х	Х

RESULTS OF THE LCA - ENVIRONMENTAL IMPACT according to EN 15804+A2: 1 m³ DHF board (615 kg/m³)

Parameter	Unit	A1-A3	C1	C2	C3	C4	D
Global Warming Potential total (GWP-total)	kg CO ₂ eq	-5.84E+02	0	1.93E+00	9.98E+02	0	-3.52E+02
Global Warming Potential fossil fuels (GWP-fossil)	kg CO ₂ eq	3.98E+02	0	1.92E+00	5.16E+00	0	-3.51E+02
Global Warming Potential biogenic (GWP-biogenic)	kg CO ₂ eq	-9.83E+02	0	-3.2E-03	9.93E+02	0	-1.02E+00
Global Warming Potential luluc (GWP-luluc)	kg CO ₂ eq	5.43E-01	0	1.54E-02	7.48E-03	0	-3.32E-01
Depletion potential of the stratospheric ozone layer (ODP)	kg CFC11 eq	1.6E-11	0	3.5E-16	1.13E-13	0	-4.98E-12
Acidification potential of land and water (AP)	mol H ⁺ eq	8.73E-01	0	6.48E-03	1.14E-02	0	2.73E-01
Eutrophication potential aquatic freshwater (EP-freshwater)	kg P eq	1.16E-03	0	5.81E-06	1.38E-05	0	-6.1E-04
Eutrophication potential aquatic marine (EP-marine)	kg N eq	3.42E-01	0	2.92E-03	2.53E-03	0	6.93E-02
Eutrophication potential terrestrial (EP-terrestrial)	mol N eq	3.69E+00	0	3.27E-02	2.66E-02	0	8.24E-01
Formation potential of tropospheric ozone photochemical oxidants (POCP)	kg NMVOC eq	9.88E-01	0	5.75E-03	6.93E-03	0	2.93E-01
Abiotic depletion potential for non fossil resources (ADPE)	kg Sb eq	2.71E-04	0	1.54E-07	1.49E-06	0	-7.49E-05
Abiotic depletion potential for fossil resources (ADPF)	MJ	5.66E+03	0	2.55E+01	9.08E+01	0	-7.02E+03
Water use (WDP)	m ³ world eq deprived	2.79E+00	0	1.86E-02	1.12E+00	0	-2.3E+01

RESULTS OF THE LCA - INDICATORS TO DESCR	IBE RESO	JRCE USE	according t	o EN 15804	+A2: 1 m³ [OHF board	(615 kg/m³)
Parameter	Unit	A1-A3	C1	C2	C3	C4	D
Renewable primary energy as energy carrier (PERE)	MJ	3.19E+04	0	1.47E+00	1.01E+04	0	-1.77E+03
Renewable primary energy resources as material utilization (PERM)	MJ	1.01E+04	0	0	-1.01E+04	0	0
Total use of renewable primary energy resources (PERT)	MJ	4.2E+04	0	1.47E+00	4.02E+01	0	-1.77E+03
Non renewable primary energy as energy carrier (PENRE)	MJ	5.25E+03	0	2.56E+01	4.94E+02	0	-7.02E+03
Non renewable primary energy as material utilization (PENRM)	MJ	4.03E+02	0	0	-4.03E+02	0	0
Total use of non renewable primary energy resources (PENRT)	MJ	5.66E+03	0	2.56E+01	9.08E+01	0	-7.02E+03
Use of secondary material (SM)	kg	2.54E-01	0	0	0	0	0
Use of renewable secondary fuels (RSF)	MJ	3.39E+03	0	0	0	0	7.7E+03
Use of non renewable secondary fuels (NRSF)	MJ	0	0	0	0	0	3.08E+02
Use of net fresh water (FW)	m ³	1.17E+00	0	1.71E-03	4.65E-02	0	-1.43E+00

RESULTS OF THE LCA – WASTE CATEGORIES AND OUTPUT FLOWS according to EN 15804+A2: 1 m³ DHF board (615 kg/m³)

Parameter	Unit	A1-A3	C1	C2	C3	C4	D
Hazardous waste disposed (HWD)	kg	1.79E-05	0	1.18E-06	3.76E-08	0	-2.38E-06
Non hazardous waste disposed (NHWD)	kg	1.01E+01	0	4.05E-03	6.44E-02	0	2.57E-01
Radioactive waste disposed (RWD)	kg	1.61E-01	0	4.71E-05	1.38E-02	0	-6.04E-01
Components for re-use (CRU)	kg	0	0	0	0	0	0
Materials for recycling (MFR)	kg	0	0	0	0	0	0
Materials for energy recovery (MER)	kg	0	0	0	6.41E+02	0	0
Exported electrical energy (EEE)	MJ	0	0	0	0	0	0
Exported thermal energy (EET)	MJ	0	0	0	0	0	0

RESULTS OF THE LCA – additional impact categories according to EN 15804+A2-optional:

1 m³ DHF board (615 kg/m³)							
Parameter	Unit	A1-A3	C1	C2	C3	C4	D
Incidence of disease due to PM emissions (PM)	Disease incidence	2E-03	0	3.66E-08	9.56E-08	0	-1.48E-06
Human exposure efficiency relative to U235 (IR)	kBq U235 eq	1.46E+01	0	6.95E-03	2.26E+00	0	-9.91E+01
Comparative toxic unit for ecosystems (ETP-fw)	CTUe	2.9E+03	0	1.9E+01	3.88E+01	0	-1.72E+03
Comparative toxic unit for humans (carcinogenic) (HTP-c)	CTUh	4.48E-07	0	3.94E-10	1.07E-09	0	-6.8E-09
Comparative toxic unit for humans (noncarcinogenic) (HTP-nc)	CTUh	3.82E-06	0	2.27E-08	3.95E-08	0	1.99E-06
Soil quality index (SQP)	SQP	8.04E+04	0	8.93E+00	2.89E+01	0	-1.29E+03

Limitation note 1 - applies to the

indicator Potential effect from human exposure to U235:

This impact category mainly addresses

the possible effect of low dose ionising radiation on human health in the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents and occupational exposure, nor does it consider the disposal of radioactive waste in underground facilities. Potential ionising radiation from soil, radon and some building materials is also not measured by this indicator.

Limitation note 2 - applies to the

indicators Potential for Abiotic Resource Depletion - Non-Fossil Resources, Potential for Abiotic Resource Depletion - Fossil Fuels, Water Depletion Potential (User), Potential Ecosystem Toxicity Comparison Unit, Potential Human Toxicity Comparison Unit - Carcinogenic Effect, Potential Human Toxicity Comparison Unit - Non-Carcinogenic Effect, Potential Soil Quality Index:

The results of this environmental impact indicator need to be used with caution as the uncertainties in these results are high or as there is limited experience with the indicator.

6. LCA: Interpretation

The following interpretation includes a summary of the LCA results relative to a declared unit of 1 m³ average EGGER DHF board.

the atmosphere as carbon dioxide emissions and contributes to the global warming potential. The energy utilisation of scrap wood was modelled CO2 neutral.

For the global warming potential (GWP) during the production phase (Module A1-A3) of the EGGER DHF board, the total is a negative value. This is due to the material use of wood in the

production. While the tree is growing,

the wood stores carbon dioxide as biogenic carbon (negative greenhouse

potential) and does therefore not have a greenhouse effect as long as it is

stored in the product. Only once the product is utilised energetically at the

end of its life (Module C3), the stored carbon is released into

The negative values in Module D can be explained through the fact that the energy generated by the energetic utilisation of the product is able to replace the combustion of fossil fuels. In this way, more emissions of (mainly fossil) fuels are avoided than those emitted through the use of the energy stored in the wood. The environmental impact (AP, EP, POCP) in Module D

is due mainly to emissions from the combustion of the biomass.

100% 80% 60% 40% 20% 0% G۷ P-fossil GW enic G<mark>WP-lul</mark>uc POCP ADP ents A<mark>DP fos</mark>sil G AP EP-f ater EP-marine EP-terrestrial -20% -40% -60% -80% -100%

Hot-spot analysis of EGGER DHF

■ A1-A3 ■ C1 ■ C2 ■ C3 ■ D

The potential environmental impacts

from the provision of electricity from the German grid, the PMDI glue system

and the timber supply chain represent the most significant influencing factors

in almost all impact categories considered.

The use of renewable primary energy

(PERT) is due to the material utilisation of the biomass in the product, as

well as the use of biomass for the production of electric as well as thermal

energy. Looking at the use of non-renewable primary energy (PENRT), this is

mainly used for the provision of energy from the German electricity mix, the

production of the PMDI glue system and the emulsion.

Considering potential acidification

(AP), excessive nutrient input (EP-freshwater, EP-marine, EP-terrestrial) and

ground-level ozone formation (POCP), the steam supply at the site also

represents a relevant variable.

The results of the previous EPD for EGGER DHF boards (EPD-EGG-20140196-IBA1-DE) are not directly comparable with the present, updated version due to the update of the underlying methodology according to *EN 15804+A2*.

7. Requisite evidence

The following tests are performed for EGGER DHF as part of the on-going external supervision or on request. 7.1

Formaldehyde

Background information: The E1 threshold value is defined at 8.0 mg maximum value or 6.5 mg average value following the perforator method *ISO 12460-5* or at 0.1 ppm according to the chamber method *EN 717-1*.

Measurement centre: Entwicklungs- und Prüflabor Holztechnologie GmbH, Dresden

Test report: 2118074/2020/3/QDF

Results:

Determined formaldehyde content (measured according to *EN* 717-1, test chamber):

• DHF: 0.02 ppm

7.2 MDI

Measurement centre: Entwicklungs- und Prüflabor Holztechnologie GmbH, Dresden

Test report: 2520047/1

Result:

The DHF boards were tested in accordance with *RAL-UZ* 76 (02/2010) and *EN* 16516 (01/2018). The emissions of MDI and other isocyanides were below the detection limit. The requirements of *RAL-UZ* 76 for MDI emissions are thereby fulfilled. **7.3 Testing for pre-treatment of the applied materials**

7.3.1 Heavy metals / eluate (EOX) and migration

Measurement centre: Entwicklungs- und Prüflabor Holztechnologie GmbH, Dresden

Test reports: 2118074/2020/3/QDF

Result:

The determination of the heavy metal content was carried out in accordance with the work standard *IHD-W-448* (04/2017) after nitric acid microwave digestion using ICP-OES. The following values were determined (LOD = limit of detection): Arsenic < LOD, Cadmium < LOD, Chromium < LOD, Copper 0.3 mg/kg, Mercury < LOD, Lead < LOD. The limit values required according to *EN* 717-3 for all values were undercut.

7.3.2 PCP and lindane

Measurement centre: Fraunhofer-Institut für Holzforschung Wilhelm-Klauditz-Institut WKI, Braunschweig

Test report: QA-2019-0555

Result:

The test was carried out according to IKEA *IOS MAT 0010* and *ChemVerbV*. The values for PCP and lindane in DHF boards are below the detection limit and therefore cannot be determined. **7.4 Toxicity of the fire gases Measurement authority:** EPA Energie- und Prozesstechnik Aachen GmbH, Department of Flue Gas Technology

Test report: 16/2014 for DHF boards material number B4061603

Result:

The test was carried out according to *EN 53436-1* and *DIN 4102-1*. According to PA-III decision 22/1, the test was carried out with covering of the lateral cut edges. A relative weight loss of 61.7 % of the sample was revealed at a test temperature of 400 °C.

After 30 minutes, only carbon monoxide with a value of 30,000 ppm was measured in the inhalation room. The other compounds (carbon dioxide, hydrogen cyanide, hydrogen chloride and sulphur dioxide) were below the measurability (detection limit = 1 ppm).

After 60 minutes, the concentrations in the inhalation room were as follows: Carbon monoxide 50,000 ppm, carbon dioxide 20,000 ppm, hydrogen cyanide

10 ppm. Hydrogen chloride and sulphur

The hydrocyanic acid concentration (HCN

The gaseous emissions released under

DHF boards are used exclusively as

external cladding - external sub-roofing

Prüflabor Holztechnologie GmbH, Dresden

emitted by wood

emissions

emissions

under the same conditions.

dioxide could not be detected (detection limit = 1 ppm).

detection limit = ppm) corresponds to the concentration as

the selected experimental conditions correspond largely to the

released by wood under the same conditions. 7.5 VOC

Test report: 2515141

Result:

The test was carried out according to the *AgBB scheme, ISO 16000* parts 3, 6 and 9. After 28 days, no more VOC emissions could be

3, 6 and 9. After 28 days, no more VOC emissions could be measured.

AgBB result overview (28 days [µg/m³])

Name	Value	Unit
TVOC (C6 - C16)	-	µg/m ³
Sum SVOC (C16 - C22)	-	µg/m ³
R (dimensionless)	-	-
VOC without NIK	-	µg/m ³
Carcinogenic Substances	-	µg/m ³

AgBB result overview (3 days [µg/m³])

Name	Value	Unit
TVOC (C6 - C16)	49	µg/m ³
Sum SVOC (C16 - C22)	-	µg/m ³
R (dimensionless)	0.034	-
VOC without NIK	-	µg/m ³
Carcinogenic Substances	-	µg/m ³

8. References

Standards

CEN/TR 12872

Measurement

centre: Entwicklungs- und

DIN CEN/TR 12872:2007-10, Wood-based materials – guideline for the use of load-bearing boards in floors, walls and ceilings.

DIN 4102-1

DIN 4102-1:1998-05, Fire behaviour of building materials and elements -

Part 1: Classification of building materials Requirements and testing.

DIN 68800-2

DIN 68800-2:2012-02, Wood preservation - Teil 2: Preventive constructional measures in buildings.

EN 310

DIN EN 310:2005, Wood-based panels - Determination of modulus of elasticity in bending and of bending strength.

EN 317

DIN EN 317:2005, Particle boards and fibreboards -Determination of swelling in thickness after immersion in water.

EN 319

DIN EN 319:2005-08, Particleboards and fibreboards -Determination of tensile strength perpendicular to the plane of the board.

EN 3222

DIN EN 322:1993, Wood-based panels - Determination of moisture content.

EN 323

DIN EN 323:2005, Wood-based panels - Determination of density.

EN 622-5

DIN EN 622-5:2009, Fibreboards - Requirements for dry process boards (MDF).

EN 717-1

DIN EN 717-1:2004, Wood-based panels - Determination of formaldehyde release.

EN 1995-1-1

DIN EN 1995-1-1: 2010-12, Eurocode 5: Design of timber structures - Part 1-1: General - Common rules and rules for buildings

EN 13501-1

DIN EN 13501-1:2018, Fire classification of construction products and building elements - Part 1: Classification using data from reaction to fire tests.

EN 13986

DIN EN 13986:2004+A1:2015, Wood-based panels for use in construction - Characteristics, evaluation of conformity and marking.

EN 14964

DIN EN 14964:2006, Rigid underlays for discontinuous roofing - Definitions and characteristics.

EN 15804

DIN EN 15804:2012+A2:2019 Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products.

EN 16516

DIN EN 16516:2018-01, Construction products: Assessment of release of dangerous substances - Determination of emissions into indoor air.

EN 53436-1

DIN EN 53436-1:2015-12, Generation of thermal decomposition products from materials for their analytic-toxicological testing - Part 1: Decomposition apparatus and determination of test temperature.

ISO 9001

DIN EN ISO 9001:2015, Quality management systems - Requirements.

ISO 12460-5

DIN EN ISO 12460-5:2015, Wood-based panels - Determination of formaldehyde

release - Part 5: Extraction method (called the perforator method).

ISO 12572

DIN EN ISO 12572:2017-05, Hygrothermal performance of building materials and products - Determination of water vapour transmission properties - Cup method.

ISO 14001

ISO 14001:2015, Environmental management systems – Requirements with guidance for use.

ISO 14025

DIN EN ISO 14025:2011-10, Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044

ISO 14044:2006-10, Environmental management - Life cycle assessment - Requirements and guidelines.

ISO 15686

ISO 15686:2011-05, Buildings and constructed assets - Service life planning.

ISO 16000-3

DIN ISO 16000-3:2013-01, Indoor air - Part 3: Determination of formaldehyde and other carbonyl compounds in indoor air and test chamber air - Active sampling method.

ISO 16000-6

DIN ISO 16000-6:2012-11, Indoor air -Part 6: Determination of volatile organic compounds in indoor and test chamber air by active sampling on Tenax TA® sorbent, thermal desorption and gas chromatography using MS or MS-FID.

ISO 16000-9

DIN ISO 16000-9-2006 + AC: 2007, Indoor air - Part 9: Determination of the emission of volatile organic compounds from building products and furnishing - Emission test chamber method.

ISO 50001

ISO 50001:2018, Environmental management systems – Requirements with guidance for use.

Additional bibliography

AgBB scheme

Indoor air quality requirements in buildings: Health assessment of

emissions of volatile organic compounds (VVOCs, VOCs and SVOCs) from building products, August 2018.

AVV

Regulation on the European Waste Catalogue (Waste Regulation) of 10/12/2001 (Federal Official Journal I p. 3379), last modified by article 119 of the Law of 19 June 2020 (Federal Official Journal I p. 1328).

BBSR Table

BBSR 2017, Useful lives of building components for life cycle analyses according to the Sustainable Building Assessment System, 2017, BBSR Germany 2017.

ChemVerbV

Prohibition Ordinance, Ordinance on Prohibitions and Restrictions on the Placing on the Market and on the Supply of Certain Substances, Mixtures and Products under the Chemicals Act, last amendment of 19 June 2020.

CPR

CPR Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011 laying down harmonised conditions for the marketing of construction products and repealing Council Directive 89/106/EEC.

ECHA List List of Substances of Very High Concern

(SVHC) Candidate for Authorisation (ECHA Candidate List), dated 25.06.2020, published in accordance with Article 59(10) of the REACH Regulation. Helsinki: European Chemicals Agency.

EGGER Manufacturer's Declaration

EGGER manufacturer's declaration, confirmation of compliance with REACH regulation 1907 / 2006 / EC, as of 29.06.2020.

EUTR Regulation (EU) 995/2010

Regulation (EU) No. 995/2010 of the European Parliament and of the Council of 20 October 2010 laying down the obligations of operators who place timber and timber products on the market; text with EEA relevance.

GaBi

GaBi 9, Software-System and Database for Life Cycle Engineering. DB v8.7 SP 40. Stuttgart, Echterdingen: thinkstep AG, 1992-2020. Available in: http://documentation.gabisoftware.com.

Hasch 2002, Rüter & Albrecht 2007

Ökologische Betrachtung von Holzspan und Holzfaserplatten (Ecological Evaluation of Particleboard and Wood Fibreboard, dissertation, Hamburg University – revised 2007: Rüter, S. (BFH HAMBURG; Holztechnologie), Albrecht, S. (Uni Stuttgart, GaBi).

IBU 2016

Institut Bauen und Umwelt e.V.: General EPD Programme Guidance of the Institut Bauen und Umwelt e.V.. (IBU). Version 1.1, Berlin: Institut Bauen und Umwelt e.V., 2016. www.ibu-epd.com.

IHD-W 448

IHD-W 448 2017-11, Determination of heavy metals and other elements by atomic emission spectrometry (ICP-OES).

IOS-MAT-0010

IOS-MAT-0010, Chemical Compounds and Substances, 2011.

MAC and BEL values

MAC and BEL values list 2016: Maximale Arbeitsplatzkonzentrationen und Biologische Arbeitsstofftoleranzwerte (Maximal accepted

concentration and biological exposure limit values), Deutsche Forschungsgemeinschaft, Wiley-VCH Verlag GmbH & Co. KgaA, 2016

PA-C-12:2006-02

"Determination of pentachlorophenol (PCP) and g-hexachlor-cyclohexan (lindane) in wood and wood-based materials", WKI-HM-2:2002-05.

PCR Part A

Product category rules for building-related products and services. PART A: Calculation rules for the ecological balancing and requirements towards the project report according to EN 15804+A2:2019. Version 1.0. Berlin: Institut Bauen und Umwelt e.V. (eds.), 2020. **PCR: Wood-based materials**

Product category rules for building-related products and services. PART B: Requirements of EPD wood-based materials. Version 1.1. Berlin: Institut Bauen und Umwelt e.V., 12.2018.

Product data sheet for wood fibre underlays

ZVDH e.V. Technical regulations, 2012.

RAL-UZ 76

Test specifications of the RAL Environmental Label - RAL-UZ- 76 (Wood-based materials), Version 8, 2016.

Rüter & Diederichs 2012

Life cycle assessment basic data for building products made of wood. Working report from the Institute of Wood Technology and Wood Biology No. 2012/1. Hamburg: Johann Heinrich von Thünen-Institut.

TA Air

German Technical Instructions on Air Quality; First general administrative regulation for the Federal Emission Control Act (Technical instructions for keeping the air clean)

version 24 July 2002.

The literature referred to in the Environmental Product Declaration must be listed in full.Standards already fully quoted in the EPD do not need to be listed here again. The current version of PCR Part A and PCR Part B of the PCR document on which they are based must be referenced.

Publisher

Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Germany +49 (0)30 3087748- 0 info@ibu-epd.com www.ibu-epd.com

Programme holder

Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Germany +49 (0)30 3087748- 0 info@ibu-epd.com www.ibu-epd.com

Author of the Life Cycle Assessment

Daxner & Merl GmbH Lindengasse 39/8 1070 Wien Austria +43 676 849477826 office@daxner-merl.com www.daxner-merl.com

Owner of the Declaration

Fritz EGGER GmbH & Co. OG Weiberndorf 20 6380 St. Johann in Tirol Austria +43 (0)50 600-0 info-sjo@egger.com www.egger.at